

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PRE MID TERM EXAMINATION 2025-26 MATHEMATICS (Marking Scheme)

Class: XII A

Date: 06/08/25

Admission no:

Time: 1hr

Max Marks: 25

Roll no:

General Instructions:

Question 1 to 5 carries ONE mark each. Questions 6 to 9 carries TWO marks each. Questions 10 to 13 carries THREE marks each.

- 1. The function $f(x) = \frac{4-x^2}{4x-x^3}$
 - (A) Discontinuous at only one point
 - (B) Discontinuous exactly at two points.
 - (C) Discontinuous at exactly three points.
 - (D) None of these
- 2 If $x = a\cos\theta$, $y = a\sin\theta$, then $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$.
 - (A) 1
- (B) 0
- (C) -1
- (D) None of these

- 3 If $y=1+e^{3x}$, find $\frac{d^2y}{dx^2}$
 - (A) 0
- (B) $6e^{3x}$
- (C) $9e^{3x}$
- (D) None of these

- 4 If $x=t^2$ and $y=t^3$ then $\frac{d^2y}{dx^2}$
 - (A) 3/2
- (B) 3/4t
- (C) 3/2t
- (D) 3/4

Assertion and Reasoning questions: In the following two questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true and R is not the correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.
- Assertion (A): The function $f(x)=e^{-|x|}$ continuous for all x. Reason (R): $f(x)=e^{-|x|}$ is differentiable for all x.

6 Determine the value of 'k' for which the following function is continuous at

x=3, f(x)=
$$\begin{cases} \frac{(x)^2-9}{x-3}, & x \neq 3\\ k, & x = 3 \end{cases}$$
.

Sol: Given function is continuous at
$$x = 3$$
, $\lim_{x \to 3} f(x) = f(3)$
$$\lim_{x \to 3} \frac{x^{2-9}}{x-3} = \lim_{x \to 3} \frac{(x+3)(x-3)}{x-3} = \lim_{x \to 3} x + 3 = 6 = f(3) = k = 6$$

If xy = 1, Prove that $\frac{dy}{dx} + y^2 = 0$ 7

Sol: Apply product rule

1

$$dy/dx + y^2 = 0$$

8 Differentiate $(\sin x)^{\cos x}$ with respect to x.

Sol: $y=(sinx)^{cosx}$ apply log to both side logy = cosx logsinx

Diff. wrt x:
$$1/y \frac{dy}{dx} = -\sin x \log \sin x + \cos x (1/\sin x) \cos x$$

 $= y(-\sin x \log \sin x + \cos x \cot x)$

 $= (\sin x)^{\cos x} (-\sin x \log \sin x + \cos x \cot x)$

The volume of a cube is increasing at a constant rate. Prove that the increase in 9 Surface area varies inversely as the length of the edge of the cube.

Sol: S=6x² and V= x³ and it is given that $\frac{dv}{dx}$ = k

 $dx/dt = k/3x^2$

 $S = 6x^2$, ds/dt = 12xdx/dt, $ds/dt = 12x \cdot k/3x^2 = 4k/x$

 $ds/dt \propto 1/x$

If the function f(x), given by f(x) = $\begin{cases} 3ax + b, & \text{if } x > 1 \\ 11, & \text{if } x = 1 \\ 5ax - 2b, & \text{if } x < 1 \end{cases}$ is continuous at x=1. 10

Sol: (LHL at x=1) = 5a-2b

(RHL at x=1) = 3a+b and f(1) = 11, since f(x) is continuous at x=1

LHL at x=1 = RHL at x=1 = f(1)

$$5a-2b = 3a+b = 11$$

5a-2b = 11 and 3a+b=11, a=3 and b=2.

11 If
$$x^2+2xy+y^2 = 42$$
, find $\frac{dy}{dx}$.

Sol: $2x+2(xdy/dx+y) + 3y^2dy/dx = 0$

$$2x+2y = -(2x+3y^2) dy/dx$$

$$\mathbf{dy/dx} = \frac{2x + 2y}{2x + 3y^2}$$

12 If
$$y = \sin^{-1}x$$
, show that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$.

Sol: $y = sin^{-1}x$, differentiate wrt x, $dy/dx = \frac{1}{\sqrt{1-x^2}}$, $\sqrt{1-x^2}dy/dx = 1$

Differentiate again wrt x $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$

Find the intervals in the function $f(x) = 2x^3+9x^2+12x+20$, (i) increasing, (ii) decreasing.

Sol:
$$f'(x) = 6x^2 + 18x + 12 = 0$$

$$x=-1$$
 and -2

Now, check the behaviour of derivative on interval

$$(-\infty, -2)$$
. $(-2, -1)$ and $(-1, \infty)$

We found f is increasing on $(-\infty, -2)U(-1, \infty)$

and f is decreasing on (-2,-1)
